Dns of Flow in a Low-pressure Turbine Cascade Using a Discontinuous-galerkin Spectral-element Method

نویسنده

  • Anirban Garai
چکیده

A new computational capability under development for accurate and efficient high-fidelity direct numerical simulation (DNS) and large eddy simulation (LES) of turbomachinery is described. This capability is based on an entropy-stable Discontinuous-Galerkin spectral-element approach that extends to arbitrarily high orders of spatial and temporal accuracy and is implemented in a computationally efficient manner on a modern high performance computer architecture. A validation study using this method to perform DNS of flow in a low-pressure turbine airfoil cascade are presented. Preliminary results indicate that the method captures the main features of the flow. Discrepancies between the predicted results and the experiments are likely due to the effects of freestream turbulence not being included in the simulation and will be addressed in the final paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

Numerical Simulation of the Taylor-Green Vortex at Re=1600 with the Discontinuous Galerkin Spectral Element Method

In the following work, we present the results of selected simulations of the classical Taylor-Green vortex problem with a variant of the Discontinuous Galerkin method (DG) labeled the “Discontinuous Galerkin Spectral Element Method” (DGSEM). In the classical DGSEM formulation, the non-linear fluxes are colocated on the solution grid, leading to a highly efficient scheme but possible aliasing er...

متن کامل

Element free Galerkin method for crack analysis of orthotropic plates

A new approach for analyzing cracked problems in 2D orthotropic materials using the well-known element free Galerkin method and orthotropic enrichment functions is proposed. The element free Galerkin method is a meshfree method which enables discontinuous problems to be modeled efficiently. In this study, element free Galerkin is extrinsically enriched by the recently developed crack-tip orthot...

متن کامل

A Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Incompressible Flows

We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving single-phase incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based...

متن کامل

Bubble Stabilized Discontinuous Galerkin Method for Stokes’ Problem

We propose a low order discontinuous Galerkin method for incompressible flows. Stability of the discretization of the Laplace operator is obtained by enriching the space element wise with a non-conforming quadratic bubble. This enriched space allows for a wider range of pressure spaces. We prove optimal convergence estimates and local conservation of both mass and linear momentum independent of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014